
Ju-ti : Jurnal Teknik Indonesia
ISSN : 2964-0490 (online)
Vol. 3, No. 02, 2024, pp. 61-67

 https://jurnal.seaninstitute.or.id/index.php/juti 61

Implementation of McEliece Algorithm in Code-Based Cryptography. Erikson Putra Perdana

Lumbantobing, et.al

Implementation of McEliece Algorithm in Code-Based

Cryptography

Erikson Putra Perdana Lumbantobing1, Githa Sabrina Pasaribu2, Nitamasi Finowa’a3, Oktoma Jaya

Halawa4, Lucanhi Situmeang5
Department of Informatics Engineering, Faculty of Computer Science Universitas Katolik Santo Thomas Medan Jl. Setia Budi No.479-F,

Tanjung Sari, Medan Selayang District,

Medan City, North Sumatra 20132, Indonesia

Article Info ABSTRACT

 The McEliece algorithm is an asymmetric cryptosystem based on error-

correcting codes, relying on the complexity of the syndrome decoding problem

for its security. This study discusses the implementation of the McEliece

algorithm using the Hamming(7,4) code in the encryption and decryption

process of binary messages. Encryption is done by generating a public key

consisting of a disguised generator matrix G′, a permutation matrix P, and a

non-singular matrix SSS. The binary message is encrypted by adding

controlled noise to increase security. In the decryption phase, the received

message is processed using reverse permutation and error detection with a

parity check matrix to recover the original message. Experiments are carried

out by implementing the algorithm in Python, with results showing successful

encryption and decryption of messages according to the McEliece theoretical

framework. This study confirms that the Hamming code can be used as a

simplified approach to the implementation of McEliece, although with security

limitations compared to Goppa codes.

Keywords:

McEliece Cryptography, Hamming

Codes, Encryption, Decryption,

Data Security.

This is an open access article under theCC BY-SAlicense.

Corresponding Author:

Githa Sabrina Pasaribu

E-mail:

kuliahgithasabrina@gmail.com

1. INTRODUCTION

Various cryptographic techniques have been developed to ensure secure communication, one of

which is code-based cryptography. The McEliece algorithm, introduced by Robert McEliece in 1978,

is an asymmetric cryptosystem that utilizes error-correcting codes to encrypt and decrypt messages.

Unlike conventional cryptographic algorithms such as RSA and ECC, which rely on number theory

problems, McEliece is based on the complexity of syndrome decoding, making it a strong candidate for

quantum computing attacks.(Parpunguan & Panjaitan, 2024.).

One of the main features of the McEliece algorithm is the use of linear error correcting codes to

secure the messages sent.(Widyawati & Utomo, 2024).By adding controlled noise during encryption,

the algorithm increases security while ensuring that the message can still be recovered by an authorized

recipient. In this study, the Hamming(7,4) code is used as the basis for implementing the McEliece

algorithm because of its structural simplicity and error-correcting capabilities.(Anggraini, 2024).

This study aims to explore the implementation of McEliece cryptosystem using Hamming(7,4)

code, analyze its encryption and decryption processes, and evaluate its effectiveness in maintaining data

security. This study further involves the development of a Python-based implementation to demonstrate

the practical application of this cryptographic method.

2. METHOD

This study uses an experimental approach to implement and evaluate the McEliece cryptographic

algorithm using the Hamming(7,4) code. The methodology is structured as follows:

Key Making

Key generation is the first and most important step in McEliece's algorithm, which involves the

creation of private and public keys. The private key consists of three components: the generating matrix

https://creativecommons.org/licenses/by-sa/4.0/
mailto:kuliahgithasabrina@gmail.com

62

JU-TI: Indonesian Engineering Journal, Vol. 3, no. 02, 2024: p. 61-67

G, the non-singular matrix S, and the permutation matrix P. The public key is derived from the private

key using the following formula:

G′ = S⋅G⋅P

a. G:The Hamming(7,4) code generator matrix, which is used to map a 4-bit message into a 7-bit

code word.

b. S:A randomly generated non-singular matrix (4x4) is used to randomize the password.

c. Q:A permutation matrix (7x7) that permutates the bits of the encoded message.

d. Public Key Generation: The public key G′ is calculated by multiplying the matrices S, G, and P.

The public key is used for encryption, while the private key is kept secret and used for decryption.

Encryption Process

The encryption process involves transforming a plain text message into cipher text that is secure

for transmission.

a. Message Conversion

The message to be encrypted is first converted into binary form using ASCII encoding. For

example, the character "Z" (ASCII 90) is represented in binary as 01011010. This binary message

is then divided into 4-bit blocks because the Hamming(7,4) code operates on 4-bit messages.

b. Public Key Encoding For each 4-bit message block, the corresponding 7-bit codeword is obtained

by multiplying the message block by the public key matrix G′: The formula for encoding each

block is:

c. I⋅G′= ci

Where:

a. I is the i-th 4-bit message block.

b. is is the corresponding 7-bit code word (block of cipher text).

d. Error Recognition To improve security, noise vectors eee are introduced to simulate errors during

transmission. The noise vectors are randomly generated and added to the ciphertext. For example,

an error vector of size 7 (equal to the length of the password) could be [0, 0, 0, 0, 1, 0, 0], which

modifies the ciphertext. The final ciphertext is:

b) y = c i + e

Where y is the final ciphertext with additional errors.

Decryption Process

The decryption process is the reverse of encryption and involves recovering the original message

from the cipher text.

a. Receiving Ciphertext

The recipient receives the ciphertext y, which consists of a 7-bit code word with potential

errors.

b. Inverse Permutation The first step in decryption is to invert the permutation applied

during encryption. This is done by multiplying the ciphertext by the inverse of the

permutation matrix P-1. The formula is:
y′ = y⋅ P-1

where y′ is the transformed ciphertext after the inverse permutation is applied.

c. Error Detection and Correction

After inverting the permutation, the parity check matrix H is used to detect and correct any errors.

The sss syndrome is calculated as:

s = y′⋅HT
If the sss syndrome is not zero, an error is present, and the error bit position can be identified and

corrected using the syndrome information.

d. Decoding

Once the errors are corrected, the final step is to decode the corrected message. The corrected

codeword is multiplied by the inverse of the S-1 matrix to obtain the original 4-bit message block.

The formula for decoding is:

m= c′⋅S-1

Where m is the recovered binary message.

e. Message Conversion Back

 63

Implementation of McEliece Algorithm in Code-Based Cryptography. Erikson Putra Perdana

Lumbantobing, et.al

The last 4-bit block is then converted back to ASCII representation and recombined to form the

original message.

3. RESULTS AND DISCUSSION

This section presents the results obtained from the implementation of the McEliece cryptosystem

using the Hamming(7,4) code. The discussion includes key generation, encryption, decryption, error

correction performance, and an analysis of the system's effectiveness in handling errors. The results are

validated by comparing the decrypted messages with the original plaintext messages and evaluating the

impact of the introduced errors.

McEliece's algorithm is a code-based cryptography method that uses linear code for encryption

and decryption. Here are the basic formulas and steps in this algorithm:

Key Making

G : The generating matrix of the Goppa code (dimensions k×nk \times nk×n).

S : A random non-singular matrix of size k×kk \times kk×kc)

P : A permutation matrix of size n×nn \times nn×n. The public key is calculated as:

Encryption Process

A binary message m (a vector of length kkk) is encrypted using the public key as follows:

Public Generator Matrix

a. Use the public generator matrix G′ to convert the message into a password before adding noise.

b. Initial encryption formula

Where:

c′ is the ciphertext before noise is added.

G'is a disguised public generator matrix, obtained from:

G is the original generator matrix of the Hamming(7,4) code.

S is a non-singular matrix of size k×k.

P is a permutation matrix of size n×n.

Add Noise e to Ciphertext

a. To increase security, an error vector e is added to the ciphertext.

b. The error vector e is chosen so that it has exactly t bits set to 1, for a total length of n.

c. Final encryption formula:

Where:

d. Youis the final ciphertext sent.

e. English:is an error vector that causes disturbances in the ciphertext.

Manual Calculation

The process of decrypting encrypted messages using the McEliece cryptography system with the

Hamming code.

McEliece Decryption Steps with Hamming Code (7,4)

1. Converting the Character "Z" to Binary. The character "Z" has an ASCII value of 90. Converting

90 to binary gives: 9010=010110102. The binary vector representation: m= [0 1 0 1 1 0 1 0] is

2. Key Preparation. Before encryption, we need to create public and private keys. Choose Hamming

Code (7,4). Code word length: n=7n = 7n=7 bits. Message length: k=4k = 4k=4 bits. Error

correction capability: 1 bit. Generator Matrix (G). Hamming code (7,4) has the following

generator matrix G:

G' = S⋅G⋅P

c′ = m⋅G'
G′ = S⋅G⋅P

y = c′ +
e

64

JU-TI: Indonesian Engineering Journal, Vol. 3, no. 02, 2024: p. 61-67

 G =

3. Permutation Matrix (P). A permutation matrix is used to shuffle the bits in a code word.

Example:

 P =

4. Non-Singular Matrix (S).The S matrix is used to scramble messages. Example:

 S =

5. Calculate Public Key

The public key is calculated as:

The private key consists of: S, G, P and a parity check matrix H.

Encryption Process

a. Dividing the Message into 4-bit Blocks. Since Hamming(7,4) works with 4-bit blocks, the

message is divided as follows: English: m1= [0 1 0 1]

m2= [1 0 1 0]

b. Encode Using Public Key. For each mim_imi block, calculate the code word using:

c. Add Error. To improve security, the eee error vector is added.

Example: English:= [0 0 0 0 1 0 0]

Thus, the ciphertext sent is:

1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0

G1 =SGP

c = mG′

y=c+e

 65

Implementation of McEliece Algorithm in Code-Based Cryptography. Erikson Putra Perdana

Lumbantobing, et.al

 y1=[0 1 0 1 0 0 1]

y2=[1 0 1 0 0 1 1]

Process Description

a. Receiving Ciphertext The recipient obtains: y1=[0 1 0 1 0 0 1]

y2=[1 0 1 0 0 1 1]

b. Remove Permutations. Using the inverse of P:

 y′ = yP-1

c. Correcting Errors. Use the parity check matrix H to detect errors: s=y′HT. If s≠0, this indicates

an error, and the error position is corrected.

d. Decode Message. Using the inverse of S, take the original message: m=c′S-1

The final result is: m=[0 1 0 1 1 0 1 0] which is the binary representation of "Z".

Testing With Python

Hamming Program Process and Results Brief Explanation:

a. Input & Conversion.The user enters a text character ("Z"). The text is converted to ASCII

binary format.

b. Encryption.The message is divided into 4-bit blocks. Each block is encoded using a

generator matrix (G'), producing a 7-bit ciphertext.

c. Description.The ciphertext undergoes permutation elimination. This syndrome is

calculated to detect and correct errors. The corrected data is converted back into 4-bit

blocks and then into the original text.
d. Output.The decrypted message is “Z”, which confirms that the algorithm worked correctly.

Figure 1. Encryption

The process of encrypting and decrypting a message using an error correction code, possibly the

Hamming Code method. The message entered is the letter "Z", which is converted to binary [0, 1, 0, 1,

1, 0, 1, 0]. Next, this message is encrypted with a generator matrix (G'), producing a ciphertext in 7-bit

form with redundancy bits for error detection. In the decryption process, the ciphertext is checked using

a syndrome to detect errors. If there are no errors, the message is returned to its original form. The final

result shows that the message was successfully sent and received without any changes, proving the

effectiveness of the error correction method used.

66

JU-TI: Indonesian Engineering Journal, Vol. 3, no. 02, 2024: p. 61-67

Goppa Program Process and Results

Code Overview:

1. Input & Conversion,The user enters a character ("Z"), which is converted to binary form.

2. Encryption Process,The message is divided into 4-bit blocks (k-bits). Each block is multiplied by

the generator matrix (G'), producing a 7-bit coded message (ciphertext).

3. Decryption Process,The ciphertext is processed by removing the permutations applied during

encryption. The original 4-bit message is extracted from the 7-bit encoded data. The decoded

binary sequence is converted back to text ("Z"), verifying its correctness.

Figure 2.Decryption process

This figure shows the process of encrypting and decrypting a message using an error-correcting

code. The message "Z" is converted to binary [0, 1, 0, 1, 1, 0, 1, 0] and encrypted using a generator

matrix (G') to produce a ciphertext with redundant bits. The ciphertext is then checked in the decryption

process, where permutations are removed to recover the original message. No errors are detected, so

the message is successfully decrypted back to binary and converted to the character "Z", indicating that

the encryption and decryption methods work well without any data loss.

4. CONCLUSION

The McEliece cryptosystem implementation using Hamming(7,4) codes demonstrated successful

encryption and decryption, with the ability to effectively correct single-bit errors. The system is very

efficient in terms of execution time and provides strong security against attacks. However, its limitations

in handling multiple errors indicate the need for alternative error-correcting codes in more challenging

environments.

REFERENCE

IMPLEMENTASI ALGORITMA KRIPTOSISTEM MCELIECE DENGAN MENGGUNAKAN KODE

REED-MULLER. (n.d.).
Parpunguan, G., & Panjaitan, H. (n.d.). Sistem Kriptografi Kuantum Perancangan dan Analisis Sistem

Kriptografi Kuantum dalam Menghadapi Cyber Attack Quantum.

Widyawati, K., & Utomo, P. H. (2024). Prosiding Seminar Nasional Sains dan Teknologi Seri 02

Fakultas Sains dan Teknologi. Universitas Terbuka, 1(2).

Laporan Kemajuan DSN Laboratorium Pulsi, 44(44), 114–116. Bernstein, DJ, Lange, T., & Peters, C.

(2008). Menyerang dan mempertahankan sistem kriptografi McEliece. Kriptografi Pasca-

Kuantum, PQCrypto 2008, 31–46. https://doi.org/10.1007/978-3-540-88403-3_3

Kriptografi Pasca-Kuantum, PQCrypto 2008, 31–46. https://doi.org/10.1007/978-3-540-88403-

3_3

https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1007/978-3-540-88403-3_3

 67

Implementation of McEliece Algorithm in Code-Based Cryptography. Erikson Putra Perdana

Lumbantobing, et.al

Gibson, K. (1996). Keamanan sistem kriptografi kunci publik McEliece. Kemajuan dalam Kriptografi

 tologi—EUROCRYPT '96, 426–440.https://doi.org/10.1007/3-540-68339-9_37

López, J., Pujol, J., & Villanueva, M. (2012). Implementasi praktis dari pendekatan publik McEliece

 sistem kriptografi kunci. Transaksi IEEE di Komputer, 61(11), 1531–1543.

 https://doi.org/10.1109/TC.2011.159Overbeck, R. (2008). Serangan struktural baru untuk

GPT dan variannya. Post-Quantum Cryptog raphy, PQCrypto 2008, 50–

66.https://doi.org/10.1007/978-3-540-88403-3_4

Peters, C. (2010). Dekode set informasi untuk kode linier dengan redundansi kecil. Lanjutkan

 Hasil Konferensi Tahunan Internasional ke-31 tentang Teori dan Aplikasi Teknik

Kriptografi (EUROCRYPT 2010), 31–46. https://doi.org/10.1007/978- 3-642-13190-5_2

Sidelnikov, VM, & Shestakov, SO (1992). Tentang ketidakamanan kriptosistem berbasis

 kode Reed-Solomon umum. Matematika Diskrit dan Aplikasi, 2(4), 439–

444.https://doi.org/10.1515/dma.1992.2.4.439

Steinwandt, R., & Witz, M. (2003). Serangan waktu polinomial terhadap sistem kriptografi McEliece

 tem berdasarkan kode Goppa atas F_q. Jurnal Kriptologi Matematika, 1(1), 55–

 65.https://doi.org/10.1515/jmc.2003.1.1.55

Tillich, J.-P., & Zeiger, G. (2018). Menguraikan kriptosistem McEliece: Sebuah survei terhadap

kriptosistem McEliece terkini kemajuan. Jurnal Teknik Kriptografi, 8(1), 67–82.

 https://doi.org/10.1007/s13389-018-0171-x

Xie, Y., Zhang, Z., & Tang, C. (2019). Skema enkripsi kunci publik yang tahan kuantum

 berdasarkan kode Goppa biner. Pemrosesan Informasi Kuantum, 18(12), 354.

 https://doi.org/10.1007/s11128-019-2433-6

https://doi.org/10.1007/3-540-68339-9_37
https://doi.org/10.1109/TC.2011.159
https://doi.org/10.1007/978-3-540-88403-3_4
https://doi.org/10.1007/978- 3-642-13190-5_2
https://doi.org/10.1515/dma.1992.2.4.439
https://doi.org/10.1515/jmc.2003.1.1.55
https://doi.org/10.1007/s13389-018-0171-x

