Identify the Maturity Level of Apples Using Fuzzy Logic Mamdani
Keywords:
apple, rome beauty, matlab, fuzzy logic, mamdani methodAbstract
Apples are one type of fruit that has properties including preventing disease, nourishing the body and being a menu when running a diet. This study aims to develop an identification system for the maturity level of apples using the mamdani fuzzy logic method. Fuzzy logic mamdani is a fairly good method of identification because the classes to be used have been predetermined. In this study, the apples used were Rome Beauty apples. The maturity level is based on the color which is divided into two, namely green raw and reddish yellow ripe. Data processing is done by preprocessing images such as resizing fruit directly. The accuracy of the dataset measured using this method results in an accuracy of 96%. In this study, an analysis of the input and output features needed by Mamdani's fuzzy logic was also carried out in classifying the maturity level of apples. The results showed that the input data could not be used effectively to classify the maturity level of apples due to the lack of input types used.
References
Antonio Ciputra, De Rosal Ignatius M S, Eko Hari R, Ajib Susanto, 2018, Klasifikasi Tingkat Kematangan Buah Apel Manalagi Dengan Algoritma Naive Bayes Dan Ekstraksi Fitur Citra Digital.
Beryl Ardinata, Sidik Nurcahyo, dan Bambang Priyadi, 2020, Implementasi Algoritma Fuzzy Pada Alat Sortir Kematangan Buah Kopi Berdasarkan Warna Berbasis Arduino Uno.
Cinantya Paramita, Eko Hari R, Christy Atika S, dan De Rosal Ignatius M S, 2019, Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor.
Cucu Sri C, Dr. Hanny Hikmayanti H, dan Dwi Sulistya K, 2021, Identifikasi Kematangan Buah Tomat Berdasarkan Warna Menggunakan Metode Hue Saturation Value.
Dick Felixs W, Herri C P,dan Jani R, 2012, Analisa persepsi dan preferensi kualitas buah tropis.
Didiek Kristianto, 2019, Karakterisasi Beberapa Varietas Buah Apel (Malus Sylvestris, Mill) Di KP Telekung, Balitjestro Jawa Timur.
Elok Faiqotul H, Maura Widyaningsih, dan Maysaroh, 2020, Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering.
Feri Wibowo, Agus Harjoko, 2017, Klasifikasi Mutu Pepaya Berdasarkan Ciri Tekstur GLCM Menggunakan Jaringan Syaraf Tiruan.
Irvan Ramadan, Dahnial Syauqy, dan Rakhmadhany Primananda, 2021, Sistem Pendeteksi Kematangan Buah Apel menggunakan Metode Naive Bayes berbasis Embedded System.
Maghfirah, T.M.Johan, dan Zara Yunizar, 2019, Identifikasi Tahap Kematangan Buah Pepaya Berdasarkan Warna Menggunakan Metode Fuzzy.
Nadia Muthiati, Herlinawati, Sri Ratna S, dan Sri Purwiyanti, 2019, Deteksi Tingkat Kematangan Buah Tomat dengan Metode Fuzzy Logic Menggunakan Modul Kamera Raspberry PI.
Siswanto, Ema Utami, dan Suwanto Raharjo, 2020, Klasifikasi Tingkat Kematangan Buah Berdasarkan Warna Dan Tekstur Menggunakan Metode K-Nearest Neighbor Dan Nearest Mean Classifier (NMC)
Untung Onny, 1994, Jenis dan Budi Daya Apel, Penebar Swadaya, Jakarta.