Forecasting Analysis of New Student Candidate Admissions Using the Simple Linear Regression Method

Authors

  • Sardo Pardingotan Sipayung Universias Katolik Santo Thomas Medan Jl. Setiabudi No. 479 F Tanjungsari Medan
  • Zakarias Situmorang Universias Katolik Santo Thomas Medan Jl. Setiabudi No. 479 F Tanjungsari Medan
  • Zekson Matondang Universias Katolik Santo Thomas Medan Jl. Setiabudi No. 479 F Tanjungsari Medan
  • Masdiana Sagala Universias Katolik Santo Thomas Medan Jl. Setiabudi No. 479 F Tanjungsari Medan

Keywords:

Orecasting, Student Admission, Regression Method, Mean Absolute Percentage Error

Abstract

The development of science and technology facilitates various aspects of life, including forecasting. Forecasting student enrollment in private universities can maximize the use of resources for services, facilities, infrastructure, and improving human resources. The regression method is used to measure the effect of promotional costs on increasing student enrollment in the future. This forecasting will be valid if an accurate model is used. The results showed the level of accuracy using the MAPE (Mean Absolute Percentage Error) model of 2.229%. However, the level of accuracy can vary each due to differences in data.

References

Purba IS, Hartama D, and Kirana IO. Implementasi Algoritma Backpropagation dalam Memprediksi Jumlah Mahasiswa Baru pada AMIK-STIKOM Tunas Bangsa Pematangsiantar, Pros. Semin. Nas. Ris. Inf. Sci., Vol. 1, September 2019: 795, doi: 10.30645/senaris.v1i0.86.

Yordan, A., Putri, T. N., & Lamkaruna, D. H. PERAMALAN PENERIMAAN MAHASISWA BARU UNIVERSITAS SAMUDRA MENGGUNAKAN METODE REGRESI LINEAR SEDERHANA. J-TIFA, 2019; 2(1): 21-27.

Ritonga, A. S., & Atmojo, S. (2018). Pengembangan Model Jaringan Syaraf Tiruan untuk Memprediksi Jumlah Mahasiswa Baru di PTS Surabaya (Studi Kasus Universitas Wijaya Putra). Jurnal Ilmiah Teknologi Informasi Asia, 2018; 12(1): 15-24.

Kementerian Riset, “Statistik Pendidikan Tinggi 2017,” Kementeri. Riset, Teknol. dan Pendidik. Tinggi, pp. 1–7, 2018, doi: 10.1002/chem.200802548.

Siregar, Y. H. Prediksi Perilaku Pola Jumlah Mahasiswa Menggunakan Jaringan Syaraf Tiruan dengan Metode Backpropagation. JurTI (Jurnal Teknologi Informasi), 2018; 1(2): 145-152.

Bengnga, A., & Ishak, R. (2018). Prediksi Jumlah Mahasiswa Registrasi Per Semester Menggunakan Linier Regresi Pada Universitas Ichsan Gorontalo. ILKOM Jurnal Ilmiah, 2018; 10(2): 136-143.

Yasinta, S. A., & Yudihartanti, Y. Prediksi Daya Tersambung Dengan Metode Double Exponential Smoothing. Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, 2017; 5(2): 1151-1162

Hidayat A. Pengertian Analisis Regresi Korelasi Dan Cara Hitung, Statiskian, 2012. https://www.statistikian.com/2012/08/analisis-regresi-korelasi.html (accessed Jan. 22, 2020).

RIFA, A., & Arifin, Z. Metode Regresi Linier Untuk Memprediksi Jumlah Pendaftar Calon Mahasiswa Baru Universitas Islam Indragiri. JURNAL ANALISIS MANAJEMEN, 2018; 4(2): 86-92.

Mulyono, “Analisis Regresi Sederhana,” 2019. https://bbs.binus.ac.id/management/ 2019/12/analisis-regresi-sederhana/#:~:text=Analisis regresi linier sederhana adalah,dengan variabel dependen (Y). (accessed Mar. 28, 2020).

Downloads

Published

2023-12-27

How to Cite

Sardo Pardingotan Sipayung, Zakarias Situmorang, Zekson Matondang, & Masdiana Sagala. (2023). Forecasting Analysis of New Student Candidate Admissions Using the Simple Linear Regression Method. Jurnal Teknik Indonesia, 2(02), 64–69. Retrieved from https://jurnal.seaninstitute.or.id/index.php/juti/article/view/561