Implementation of McEliece Algorithm in Code-Based Cryptography
DOI:
https://doi.org/10.58471/ju-ti.v3i02.666Keywords:
McEliece Cryptography, Error Correcting Codes, Post-Quantum Security, Encryption, Decryption.Abstract
The McEliece algorithm is an asymmetric cryptosystem based on error-correcting codes, relying on the complexity of the syndrome decoding problem for its security. This study discusses the implementation of the McEliece algorithm using the Hamming(7,4) code in the encryption and decryption process of binary messages. Encryption is done by generating a public key consisting of a disguised generator matrix G′, a permutation matrix P, and a non-singular matrix SSS. The binary message is encrypted by adding controlled noise to increase security. In the decryption phase, the received message is processed using reverse permutation and error detection with a parity check matrix to recover the original message. Experiments are carried out by implementing the algorithm in Python, with results showing successful encryption and decryption of messages according to the McEliece theoretical framework. This study confirms that the Hamming code can be used as a simplified approach to the implementation of McEliece, although with security limitations compared to Goppa codes.
References
IMPLEMENTASI ALGORITMA KRIPTOSISTEM MCELIECE DENGAN MENGGUNAKAN KODE REED-MULLER. (n.d.).
Parpunguan, G., & Panjaitan, H. (n.d.). Sistem Kriptografi Kuantum Perancangan dan Analisis Sistem Kriptografi Kuantum dalam Menghadapi Cyber Attack Quantum.
Widyawati, K., & Utomo, P. H. (2024). Prosiding Seminar Nasional Sains dan Teknologi Seri 02 Fakultas Sains dan Teknologi. Universitas Terbuka, 1(2).
Laporan Kemajuan DSN Laboratorium Pulsi, 44(44), 114–116. Bernstein, DJ, Lange, T., & Peters, C. (2008). Menyerang dan mempertahankan sistem kriptografi McEliece. Kriptografi Pasca-Kuantum, PQCrypto 2008, 31–46. https://doi.org/10.1007/978-3-540-88403-3_3
Kriptografi Pasca-Kuantum, PQCrypto 2008, 31–46. https://doi.org/10.1007/978-3-540-88403-3_3
Gibson, K. (1996). Keamanan sistem kriptografi kunci publik McEliece. Kemajuan dalam Kriptografi tologi—EUROCRYPT '96, 426–440.https://doi.org/10.1007/3-540-68339-9_37
López, J., Pujol, J., & Villanueva, M. (2012). Implementasi praktis dari pendekatan publik McEliece sistem kriptografi kunci. Transaksi IEEE di Komputer, 61(11), 1531–1543. https://doi.org/10.1109/TC.2011.159
Overbeck, R. (2008). Serangan struktural baru untuk GPT dan variannya. Post-Quantum Cryptog raphy, PQCrypto 2008, 50–66.https://doi.org/10.1007/978-3-540-88403-3_4
Peters, C. (2010). Dekode set informasi untuk kode linier dengan redundansi kecil. Lanjutkan Hasil Konferensi Tahunan Internasional ke-31 tentang Teori dan Aplikasi Teknik Kriptografi (EUROCRYPT 2010), 31–46. https://doi.org/10.1007/978- 3-642-13190-5_2
Sidelnikov, VM, & Shestakov, SO (1992). Tentang ketidakamanan kriptosistem berbasis kode Reed-Solomon umum. Matematika Diskrit dan Aplikasi, 2(4), 439– 444.https://doi.org/10.1515/dma.1992.2.4.439
Steinwandt, R., & Witz, M. (2003). Serangan waktu polinomial terhadap sistem kriptografi McEliece tem berdasarkan kode Goppa atas F_q. Jurnal Kriptologi Matematika, 1(1), 55– 65.https://doi.org/10.1515/jmc.2003.1.1.55
Tillich, J.-P., & Zeiger, G. (2018). Menguraikan kriptosistem McEliece: Sebuah survei terhadap kriptosistem McEliece terkini kemajuan. Jurnal Teknik Kriptografi, 8(1), 67–82. https://doi.org/10.1007/s13389-018-0171-x
Xie, Y., Zhang, Z., & Tang, C. (2019). Skema enkripsi kunci publik yang tahan kuantum berdasarkan kode Goppa biner. Pemrosesan Informasi Kuantum, 18(12), 354. https://doi.org/10.1007/s11128-019-2433-6