K-Means Clustering of Student Mid-Term and Final Exam Data

Authors

  • Nella Ane Br Sitepu Universitas Katolik Santo Thomas Medan Fakultas Ilmu Komputer
  • Agnesia Rointan Sijabat Universitas Katolik Santo Thomas Medan Fakultas Ilmu Komputer
  • Cindy Rounali Limbong Universitas Katolik Santo Thomas Medan Fakultas Ilmu Komputer
  • Lenny Evalina Pasaribu Universitas Katolik Santo Thomas Medan Fakultas Ilmu Komputer
  • Einson O.B Nainggolan Universitas Katolik Santo Thomaas Medan Fakultas Ilmu Komputer
  • Michael Manulang Universitas Katolik Santo Thomaas Medan Fakultas Ilmu Komputer

Abstract

This study examines the use of the k-means clustering method in grouping students based on UAS and UTS scores to identify patterns of academic achievement. Clustering is an effective data mining technique for grouping data based on similar characteristics. By applying the k-means algorithm, this study aims to make it easier for lecturers to identify student abilities, so that they can provide appropriate support to those who need help. Data were taken from UTS and UAS scores of students at a university in Indonesia, and the results of the analysis showed that k-means clustering can group students according to their level of achievement. These findings are expected to help in the development of more effective teaching strategies and interventions, improving the quality of education and overall academic performance of students.

References

Adistya, A. P., Luthfyani, N., Tara, P., Adriyan, R., & Rosyani, P. (2023). Klasterisasi Menggunakan Algoritma K-Means Clustering Untuk Memprediksi Kelulusan Mata Kuliah Mahasiswa. OKTAL: Jurnal Ilmu Komputer dan Sains, 2(08), 2301-2306.

Poerwanto, B., & Fa’rifah, R. Y. (2016). Analisis cluster k-means dalam pengelompokan kemampuan mahasiswa. Jurnal Scientific Pinisi, 2(2), 92-96.

Maulana, I., & Rosalina, U. (2020). Clustering Data Nilai Ujian Akhir Semester Menggunakan Algoritma Data Mining K-Means. PERISKOP: Jurnal Sains Dan Ilmu Pendidikan, 1(2), 76-85.

Pradnyana, G. A., & Permana, A. A. J. (2018). Sistem Pembagian Kelas Kuliah Mahasiswa Dengan Metode K-Means Dan K-Nearest Neighbors Untuk Meningkatkan Kualitas Pembelajaran. Jurnal Ilmiah Teknologi Informasi, 16(1), 59-68.

Talakua, A. C. (2023). Penerapan Data Mining untuk memprediksi Nilai Akhir Matakuliah Menggunakan Metode K-Means Clustering. JURNAL TEKNIK INFORMATIKA INOVATIF WIRA WACANA, 2(3), 178-186.

Ariawan, M. P. A., Peling, I. B. A., & Subiksa, G. B. (2023). Prediksi Nilai Akhir Matakuliah Mahasiswa Menggunakan Metode K-Means Clustering (Studi Kasus: Matakuliah Pemrograman Dasar). J. Nas. Teknol. dan Sist. Inf, 9(2), 122-131.

Poerwanto, B., & Fa'rifah, R. Y. (2016). Analisis Cluster Menggunakan Algoritma K-Means. Jurnal Ilmiah Teknologi Informasi, 6(2).

Sibuea, M. L., & Safta, A. (2017). Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustring. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 4(1), 85-92.

Wiyono, D. E. (2020). Pengelompokan Mahasiswa Berdasarkan Pencapaian Prestasi Belajar dari Mata Kuliah yang Ditempuh Berbasis Web dengan K-Means Clustering. Journal of Telecommunication Electronics and Control Engineering (JTECE), 2(2), 69-77.

Downloads

Published

2024-10-31

How to Cite

Nella Ane Br Sitepu, Agnesia Rointan Sijabat, Cindy Rounali Limbong, Lenny Evalina Pasaribu, Einson O.B Nainggolan, & Michael Manulang. (2024). K-Means Clustering of Student Mid-Term and Final Exam Data. Jurnal Komputer Indonesia (Ju-Komi), 3(01), 22–27. Retrieved from https://jurnal.seaninstitute.or.id/index.php/jukomi/article/view/593