Analysis of Malaria Disease Classification Based on Age in the Work Area of Idanogawo Health Center, Idanogawo District, Nias Regency Using the Decision Tree Algorithm

Authors

  • Sipra Barutu Magister Teknologi Informasi, Unversitas Pembangunan Pancabudi, Medan, Indonesia

Keywords:

Malaria, age group, Decision Tree algorithm, malaria incidence

Abstract

Malaria is an infectious disease caused by the Plasmodium parasite, which is transmitted through the bite of the Anopheles mosquito. This disease can affect individuals of all age groups, but its prevalence varies between age groups. This study aims to analyze the relationship between age and malaria incidence in the working area of ​​the Idanogawo Health Center, Nias Regency, using the Decision Tree algorithm. Secondary data collected from medical records at the Idanogawo Health Center were processed through preprocessing to obtain age and malaria incidence attributes. The results of the analysis showed that the age group <30 years had the highest percentage of malaria incidence (80%), followed by the age groups 30-39 years and 40-49 years, each of which recorded an incidence rate of around 73%. The age group >=50 years also showed a high incidence of malaria (100%), although the sample size was small. These findings indicate that malaria attacks younger people more, but older age groups are also significantly affected.

References

Sumut, D. (2019). Profil sumatera utara. 1-379.

RI, k. (2020). PROFIL KESEHATAN Indonsesia TAHUN 2019. 1-497.

Banyal, N. A., & Surianti, S. (2023). Implementasi Data Mining Untuk Prediksi Penyakit Malaria Tropika Dengan Algoritma C4. 5. Jurnal Ilmiah MATRIK, 25(3), 236-242.

Ramadhan, N. G., & Khoirunnisa, A. (2021). Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine. Jurnal Media Informatika Budidarma, 5(4), 1580-1584.

Febriana, U., Furqon, M. T., & Rahayudi, B. (2018). Klasifikasi penyakit typhoid fever (tf) dan dengue haemorhagic fever (dhf) dengan menerapkan algoritma decision tree C4. 5 (Studi kasus: Rumah Sakit Wilujeng Kediri). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(3), 1275-1282.

Charisma, R. A., Pamungkas, S., Saputra, R. A., Ramadhan, N. G., & Adhinata, F. D. (2022). Analisis Penerapan Metode Ensembled Learning Decision Tree Pada Klasifikasi Virus Hepatitis C. Journal of Computer System and Informatics (JoSYC), 3(4), 405-409.

Downloads

Published

2024-10-30

How to Cite

Sipra Barutu. (2024). Analysis of Malaria Disease Classification Based on Age in the Work Area of Idanogawo Health Center, Idanogawo District, Nias Regency Using the Decision Tree Algorithm. Jurnal Komputer Indonesia (Ju-Komi), 3(01), 34–38. Retrieved from https://jurnal.seaninstitute.or.id/index.php/jukomi/article/view/609